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Scale-free network on a vertical plane
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A scale-free network is grown in the Euclidean space with a global directional bias. On a vertical plane,
nodes are introduced at unit rate at randomly selected points and a node is allowed to be connected only to the
subset of nodes which are below it using the attachment probability,p i(t);ki(t),a. Our numerical results
indicate that the directed scale-free network fora50 belongs to a different universality class compared to the
isotropic scale-free network. Fora,ac , the degree distribution is stretched exponential in general which takes
a pure exponential form in the limit ofa→2`. The link length distribution is calculated analytically for all
values ofa.
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It has been seen in many branches of statistical phy
that a global directional bias in space has strong effect on
critical behavior of simple models. Introduction of a pr
ferred direction in the system reduces the degrees of free
of the constituting elements of the system, which shrinks
configuration space available to the system compared to
undirected system. As a result a directed system is sim
and quite often tractable analytically. Examples include
rected percolation@1#, directed sandpile model@2#, directed
river networks@3#, and directed self-avoiding walks@4# etc.

Over the last few years it is becoming increasingly e
dent that highly complex structures of many social@5#, bio-
logical @6,7#, or electronic communication@8,9# networks
etc. cannot be modeled by simple random graphs. For
ample, in the well known random graphs by Erdo¨s and Re´-
nyi, the degree distributionP(k) is Poissonian~degreek of a
vertex is the number of edges attached to it! @10#. In contrast,
it has been observed recently that the nodal degree dist
tions of many networks, e.g., World Wide Web@8# and the
Internet @9# have power law tails,P(k);k2g. Due to the
absence of a characteristic value for the degrees these
works are called ‘‘scale-free networks’’~SFN! @11–14#.
Barabási and Albert~BA! generated scale-free graphs whe
a fixed number of vertices are added at each time and
linked with a linear attachment probability@11#. On the other
hand some of these networks are directed networks wh
links are meaningful only when there is a connection fro
one end to the other but not the opposite, e.g., the W
Wide Web @8#, the phone-call graph@15#, and the citation
graph@16#.

However, there are networks in which the nodes are g
graphically located in different positions on a tw
dimensional Euclidean space, e.g., electrical networks, In
net, or even in postal and transport networks etc. The ed
of the graphs representing these networks carry nonunif
weights which in most cases are either equal or proportio
to the Euclidean lengths of the links. In these network
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relevant question is how to optimize the total cost of t
connections, e.g., electrical wires, Ethernet cables, or
travel distances of postal carriers@17#. On the other hand a
detailed knowledge of link length distribution is also impo
tant in the study of Internet’s topological structure for d
signing efficient routing protocols and modeling Intern
traffic. For example, Waxman model describes the Inter
with exponentially decaying link length distribution@18#.
Yook et al. observed that nodes of the router level netwo
maps of North America are distributed on a fractal set a
the link length distribution is inversely proportional to th
link lengths @19#. Other models of networks on Euclidea
space are also studied in the literature@20–22#.

In this paper we studied the effect of a global direction
preference on the statistics of scale-free networks embed
in the Euclidean space. A typical link in this model mu
have a positive component along some preferred direct
Similar to the directed versions of well known models
statistical physics@1–4# our spatially directed networks hav
different universal critical behavior compared to their un
rected counterparts.

A two-dimensional network is grown whose nodes a
the points at randomly selected positions within an u
square on the verticalx2y plane. To construct a networ
of N11 nodes, let (x0 ,x1 ,x2 , . . . ,xN) and (y1 ,y2 , . . . ,yN)
be the 2N11 independent random variables identica
and uniformly distributed within the interval$0,1%. Let a
specific set of values of the random variabl
$(x0,0),(x1 ,y1),(x2 ,y2), . . . ,(xN ,yN)% represent the coor
dinates of theN11 randomly distributed points. The growt
of the network starts with only one node (x0,0) on the bot-
tom side of the unit square and then the other nodes
added one by one at unit rate according to their serial nu
bersi 51 to N.

We assume that the global directional bias is the grav
and acts along the2y direction which restricts the choice o
the link: a new node can only be connected to a node p
tioned below this node. In practice when thetth node is
introduced, we consider the subsetSt of the nodes situated
below thetth node. Thetth node is then connected to an
©2004 The American Physical Society02-1
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node of this subset using some specific attachment rule
addition, we assume that from each node only one l
comes out but any number of links can terminate on t
node. This condition ensures that the network is a sin
connected tree graph. Initially the zeroth point is assign
the degreek0(0)51. Link lengths are measured using th
periodic boundary condition imposed only along thex direc-
tion because of the anisotropy. Depending on how a n
from the subsetSt is selected for connection we consider t
following two models:

~a! Directed scale-free network (DSFN). The tth node is
randomly connected to a nodei of the subsetSt using an
attachment probability which is linearly proportional to th
degreeki(t) of the nodei at time t as:p i(t);ki(t).

~b! Directed minimal growing network (DMGN). The tth
node is connected with probability one to the nearest nod
the subsetSt . Pictures of typical network configurations a
shown in Fig. 1.

A continuous tuning between these two different mod
is possible by the choice of a suitable tunable parametea.
This is achieved by modulating the attachment probability
DSFN by a link length, dependent factor like

p i~ t !;ki~ t !,a. ~1!

This introduces a competition between the roles played
the degree as well as the link length on the attachment p
ability. The limiting extreme cases are the above two mod
In the case witha50 the link lengths do not play any rol
and therefore the model corresponds toDSFN. On the other
hand whena52` only the shortest link is selected wit
probability one irrespective of the degree of the node a
therefore the model corresponds to DMGN. First we stu
these two limiting cases.

For a scale-free network the nodal degree distribution
a power law tail,P(k);k2g and it obeys a finite size scalin
form:

P~k,N!;N2hF~k/Nz!. ~2!

We numerically find that the degree distribution of DSF
~excluding the node on the bottom line! indeed follows such
a scaling form withh'2.4060.05 andz'1.0060.05 ~Fig.
2!. This givesgDFSN5h/z'2.460.1. This value ofgDSFN

FIG. 1. Pictures of the networks generated from the same
tribution of 513 points within the unit box. A large degree node
visible for a DSFN in~a! and long length early links are observe
for a DMGN in ~b!.
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is compared withg53 for the BA model of SFN@11# and
therefore it seems that DSFN belongs to a new universa
class different from BA SFN. On the other hand the deg
distribution for the DMGN is found to decay exponential
as,P(k);exp(2kk) with k'0.74.

For a tree graph, the branch size distribution is very i
portant and the associated exponent may be used to ch
terize the graph. On a tree structure, each edge connects
branches of the tree. If an edge is selected randomly,
probability Prob(s) that any one of the two branches su
ports s nodes also decays with a power law tail, Prob(s)
;s2t and follows a scaling form:

Prob~s!;N2hbG~s/Nzb!. ~3!

For DSFN, we obtainhb'2.15 andzb'1, which implies
that tDSFN'2.15 compared to its exact value 2 for the B
scale-free network@23#. On the other hand for DMGN we
find hb'2 andzb'1 so thattDMGN'2.

The probability density distributionD(,) gives the prob-
ability D(,)d, that an arbitrarily selected link has a leng
between, and,1d,. For the undirected scale-free Euclid
ean networks we saw thatD(,) has a power law variation
D(,);,d @19,22#. D(,) can be calculated exactly for bot
DSFN as well as DMGN in the following way. Let us try t
assign a link to the (n11)th node and denotey5yn11. Let
n1 points be positioned below they level andn25n2n1
points be above this level.

We first calculateDDMGN(,). The probability that out of
n1 nodes the node which is nearest to the (n11)th node is
positioned at a distance between, and ,1d, has two dis-
tinct contributions: One from the case of ally., and the
other for all y,, ~due to the presence of the boundary
y50). When the (n11)th point is at a specific heighty, the
first contribution is a product of three factors:p,d, for the

s-

FIG. 2. The scaled degree distribution for DSFN for netwo
sizesN5212,214, and 216. The collapse of the data at largek values
imply that the degree distribution exponentg'2.4.
2-2
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nearest point being within the annular semicircular ring
radii , and ,1d,, restn121 points below they level but
outside the semicircle of radius,, and the remainingn2
points being situated above they level. Therefore the first
contribution can be expressed as

p,d,Sn150
n $nCn1

%n1@y2p,2/2#n121~12y!n2

5p,d,~n!@12p,2/2#n21.

Here the weight factor from each partitioning ofn into n1
and n2 has been taken into account. The above probab
after integration overy from , to 1 and summed over a
n from 0 to ` gives the net contribution toD(,) for all y
.,:

DDMGN~y., !5p,@12,#Sn50
` n@12p,2/2#n21

5
4

p,3
~12, !.

Similarly the probability that the (n11)th point is at a spe-
cific heighty,, is ~note that here part of the semicircle
areap,2/2 lies outside the boundary!

2, sin21
y

,
d,Sn150

n $nCn1
%~n1!

3Fy2S ,2sin21
y

,
1yA,22y2D Gn121

~12y!n2

52, sin21
y

,
nF12S ,2sin21

y

,
1yA,22y2D Gn21

d,.

FIG. 3. Variations of the average clustering coefficients
DSFN: ~a! Over the whole network,C(N);N2bN and~b! Over the
subset of nodes having degreek only C(k);@k(ln k)#2bk. Our esti-
mates arebN'0.23 andbk'0.64.
01710
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As before a similar sum overn and integration overy from
y50 to y5, in the above expression gives the followin
contribution toD(,) for all y,,:

DDMGN~y,, !5
A

,2
,

where A5E
0

1 2 sin21z

sin21z1zA12z2
dz.

Hence the total distribution is given by

DDMGN~, !5
4

p,3 F12S 12
p

4
AD ,G . ~4!

For the DSFN also one has

DDSFN~y., !5CE
,

1 p,

y
dy,

and DDSFN~y,, !5CE
0

,

,
2 sin21~y/, !

y
dy,

where C is a constant. The total distribution is therefo
given by

DDSFN~, !5C@B,2p, ln~, !#,

where B52E
0

1 sin21z

z
dz.

From our numerical calculations we estimateC'1.59 and
B'1.86. For any nonzeroa, the corresponding distribution
can be obtained by simply multiplying the above express
by ,a.

r

FIG. 4. Variation of the exponentb~a! characterizing the
stretched exponential degree distribution. The continuous curve
fit to the data points~circles! obtained by simulation to a form
b(a)5a(2a)n2b such that b is extrapolated to zero atac

'20.85.
2-3



th
w

f

ie

an
-

on

m
e
s

s

be
e

for

the
o-
ree
ork
un-

In
g
n.
l
al-

a-
cial

BRIEF REPORTS PHYSICAL REVIEW E69, 017102 ~2004!
The clustering coefficientC(N) of a network ofN nodes
measures the the local correlations among the links of
network. More precisely it measures the probability that t
neighbors of an arbitrary node are also neighbors. If thei th
node has the degreeki and there areei links among theki
neighbors ofi then the clustering coefficient of the sitei is
Ci52ei /@ki(ki21)#, whereas the clustering coefficient o
the whole network isC(N)5^Ci&. For a number of net-
works it has been observed that the clustering coeffic
decreases withN like C(N);N2bN as the network sizeN
increases. Also one can define a clustering coefficientC(k)
averaged over the subset of nodes of degreek on the net-
work. It has been also observed thatC(k);k2bk for some
networks. We estimated these exponents for DSFN
found thatbN'0.23, whereasC(k) has a logarithmic modu
lation like C(k);@k(ln k)#2bk with bk'0.64 ~Fig. 3!.

Finally we study the variation of the degree distributi
P(k) with the parametera. For finite negative values ofa
the distribution fits very well to a stretched exponential for
P(k);exp(2ckb(a)), whereb~a! is expected to reach to on
as a→2` and to zero asa→ac . Our numerical estimate
for b have been plotted in Fig. 4 witha and this data fits
very well to form b(a)5a(2a)n2b, where the constant
are estimated to bea'0.47, n'0.51, andb'0.43. This im-
on
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plies that the stretched exponential form continues to
valid till a5ac , where b50 and beyond that the degre
distribution is a power law. Though from the values ofa,n,
and b, ac is estimated to be20.85 we believeac521 is
more plausible. Also our numerical results indicate that
all a.ac the degree distribution exponentg maintains its
value ofa50.

To summarize, we studied the directed version of
Barabasi-Albert scale-free network grown on a tw
dimensional vertical plane. Our numerical results on deg
as well as branch size distributions indicate that this netw
belongs to a different universality class compared to its
directed version. A competition between the degreek of the
nodes and a link length dependent factor,a in the attach-
ment probability is seen to control the network behavior.
the limit a→2` one gets the directed minimally growin
network with exponentially decaying degree distributio
However for finite negative values ofa stretched exponentia
distributions are observed. The link length distribution is c
culated analytically for all values ofa.
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